Stay on top!
Get helpful articles and special offers once a month.
Get helpful articles and special offers once a month.
Our most advanced system with new automated features
Pan, Y., Chu, L., Liu, J., Lv, B., Belfiore, L., Tang, J.
Metals
The surface plasmon resonance of copper in the near infrared region provides a novel method for enhancement of up-conversion luminescence compared to using gold and silver, as the former grants significant cost savings. In this study, we made a flat Cu film covered TiO2 to enhance the up-conversion fluorescence intensity. The results show that the deposition of copper/TiO2 dioxide nanocomposite film prepared via spin-coating has no effect on the structure of NaGdF4:Er3+, Yb3+. The absorption wavelength of the copper film moved from the original visible wavelength (~600 nm) range to the infrared wavelength after covering TiO2, and most obviously, the copper film covered two layers of TiO2 by about 16 nm; the peak of the absorption appeared at 835 nm due to the enhanced excitation field. The behavior of the nanocomposite film with NaGdF4:Er3+ and Yb3+ under 980 nm excitation was investigated; it provides a novel way for studying mental-enhanced fluorescence. Besides, the peaks of the fluorescence spectrum show different emissions at 542 nm and 660 nm, respectively. The copper nanoparticles-covered TiO2 layer can obviously enhance the fluorescence intensity, and the maximum enhancement factors of emission of NaGdF4:Er3+ and Yb3+ nanoparticles are 3.1 and 1.9 on the nanocomposite film, respectively.
DOI: 10.3390/met10050628