Stay on top!
Get helpful articles and special offers once a month.
Get helpful articles and special offers once a month.
Our most advanced system with new automated features
Mitrovic, A., Nagel, W., Leang, K., Clayton, G.
IEEE/ASME Trans. Mechatron.
In this paper, a closed-loop control framework for dual-stage nanopositioning systems is presented that allows the user to allocate control efforts to the individual actuators based on their range capabilities. Recent work by the authors has focused on range-based control of dual-stage actuators implemented as a prefilter, which assumes that each individual actuator has sensor feedback enabling them to be controlled separately. This paper seeks to address the problem of range-based control of dual-stage systems when sensor measurements are only available from the total output of the system, a commonly encountered design. This is a significant departure from previous work since the range-based filter is included in the dual-stage system feedback loop and stability becomes a concern. In this work, the controller is presented, stability conditions are determined, and imaging experiments are performed on an atomic force microscope (AFM). Tracking results show that the root-mean-square (RMS) tracking error for various triangular reference trajectories is improved with the presented range-based control structure by up to 50% compared to frequency-based methods.