Publications

Kesari, K.K., O’Reilly, P., Seitsonen, J., Ruokolainen, J., Vuorinen, T.
Infrared photo-induced force microscopy (IR PiFM) was applied for imaging ultrathin sections of Norway spruce (Picea abies) at 800–1885 cm−1 with varying scanning steps from 0.6 to 30 nm. Cell wall sublayers were visualized in the low-resolution mode based on differences in their chemical composition....
Wan, F., Wang, W., Zou, Z., Xie, H., Ping, H., Fu, Z.
As one of the most delicate bioprocesses in nature, biosilicification is closely related to biosilica with various morphologies, and has provided abundant inspiration to materials synthesis. In the present study, to explore the biosilica formation process and fabricate silica with an exquisite microstructure for lithium-ion...
I. C. ten Have, A. J. A. Duijndam, R. Oord, H. J. M. van Berlo-van den Broek, I. Vollmer, B. M. Weckhuysen, F. Meirer
Abstract The degradation of plastic waste in aquatic environments, leading to plastic particles at the micro- and nanoscale is of growing concern. However, conventional analytical techniques either lack sufficient spatial resolution or the necessary spectroscopic means to investigate individual plastic nanoparticles. Both are however necessary...
Otter, L.M., Förster, M.W., Belousova, E., O’Reilly, P., Nowak, D., Park, S., Clark, S., Foley, S.F. and Jacob, D.E.
Photo-induced force microscopy (PiFM) is a new-frontier technique that combines the advantages of atomic force microscopy with infrared spectroscopy and allows for the simultaneous acquisition of 3D topographic data with molecular chemical information at high spatial (~ 5 nm) and spectral (~ 1 cm−1) resolution...
Patabendigedara, S., Nowak, D., Nancarrow, M.J.B., and Clark, S.M.
The amount and distribution of water in nominally anhydrous minerals (NAMs) are usually determined by Fourier-transform infrared spectroscopy. This method is limited by the spot size of the beam to the study of samples with dimensions greater than a few micrometers. Here, we demonstrate the...
Almajhadi, MA., Uddin, SMA., Wickramasinghe, HK.
Infrared photoinduced force microscopy (IR-PiFM) is a scanning probe spectroscopic technique that maps sample morphology and chemical properties on the nanometer (nm)-scale. Fabricated samples with nm periodicity such as self-assembly of block copolymer films can be chemically characterized by IR-PiFM with relative ease. Despite the...
Chen, L., Mao, S., Wang, P., Yao, Z., Du, Z., Zhu, Z., Belfiore, L., Tang, J.
Hot‐electron injection induced by plasmon decay enables ultrafast electron transfer in femtosecond scale and therefore endows metallic nanoparticles (MNPs) promising potentials in high‐speed optoelectronics. With much higher density of states next to its Fermi level, palladium (Pd) can more efficiently launch hot electrons according to...
Song, J., Ye, L., Li, C., Xu, J., Chandrabose, S., Weng, K., Cai, Y., Xie, Y., O'Reilly, P., Chen, K., Zhou, J., Zhou, Y., Hodgkiss, JM., Liu, F., Sun, Y.
Morphological stability is crucially important for the long-term stability of polymer solar cells (PSCs). Many high-efficiency PSCs suffer from metastable morphology, resulting in severe device degradation. Here, a series of copolymers is developed by manipulating the content of chlorinated benzodithiophene-4,8-dione (T1-Cl) via a random copolymerization...
Xu, C., Bo, Z., Wu, S., Wen, Z., Chen, J., Luo, T., Lee, E., Xiong, G., Amal, R., Wee, A., Yan, J., Cen, K., Fisher, T., Ostrikov, K.
Effective separation and transfer of photogenerated charge carriers are common issues in solar energy conversion. Strong localized electric fields near functional nanostructures reduce charge recombination and boost energy efficiency and photocatalytic activity. However, common metal-based photocatalytic systems on conducting supports under-utilize infrared (IR) light energy,...
Chen, Q., Zhang, Y., Liu, S., Han, T., Chen, X., Xu, Y., Meng, Z., Zhang, G., Zheng, X., Zhao, J., Cao, G., Liu, G.
PiFM images of the CsFAMA film, sequentially recorded in the a) pristine state, b–f) after being subjected to voltage stressing with the amplitude of −1 to −0.2 V and i–n) after being subjected to voltage stressing with the amplitude of 0 to 1 V and a ramping...
Mitrovic, A., Nagel, W., Leang, K., Clayton, G.
In this paper, a closed-loop control framework for dual-stage nanopositioning systems is presented that allows the user to allocate control efforts to the individual actuators based on their range capabilities. Recent work by the authors has focused on range-based control of dual-stage actuators implemented as...
Allender, CJ., Bowen, JL., Celorrio, V., Davies-Jones, JA., Davies, PR., Guan, S., O'Reilly, P., Sankar, M.
The control of the growth of hematite nanoparticles from iron chloride solutions under hydrothermal conditions in the presence of two different structure promoters has been studied using a range of both structural and spectroscopic techniques including the first report of photo induced force microscopy (PiFM)...
Zhang, X., Jiang, Q., Wang, J., Tang, J.
Black phosphorus quantum dots (BPQDs), as 2D van der Waals crystals, possess remarkable electronic and optoelectronic properties. Their excellent ultra-high mobility and thickness-dependent tunable direct bandgap can meet well the needs of polymer solar cells (PSCs) for adjustable energy levels in different active layer systems....
Jahng, J., Son, JG., Kim, H., Park, J., Lee, TG., Lee, ES.
Chemical characterizations of biochemically functionalized single nanoparticles are necessary to optimize the nanoparticle surface functionality in recently advanced nanobiological applications but have not yet been fully explored because of technical difficulties. Exploiting the photoinduced force exerted on a light-illuminated nanoscale tip, nanoscale mid-infrared hyperspectral images...
Yu, W., Fu, HJ., Mueller, T., Brunschwig, BS., Lewis, NS.
Integrated photoelectrochemical devices rely on the synergy between components to efficiently generate sustainable fuels from sunlight. The micro- and/or nanoscale characteristics of the components and their interfaces often control critical processes of the device, such as charge-carrier generation, electron and ion transport, surface potentials, and...
Hafermann, M., Zapf, M., Ritzer, M., Printschler, A., Luo, Y., Ambrosio, A., Wilson, W., Ronning, C.
* You have cookies disabled in your browser. You need to reset your browser to accept cookies or to ask you if you want to accept cookies. * Your browser asks you whether you want to accept cookies and you declined. To accept cookies from...
Pan, Y., Chu, L., Liu, J., Lv, B., Belfiore, L., Tang, J.
The surface plasmon resonance of copper in the near infrared region provides a novel method for enhancement of up-conversion luminescence compared to using gold and silver, as the former grants significant cost savings. In this study, we made a flat Cu film covered TiO2 to...
Chen, Z., Chen, X., Qiu, B., Zhou, G., Jia, Z., Tao, W., Li, Y., Yang, YM., Zhu, H.
Nonfullerene acceptors (NFAs) have attracted great attention in high-efficiency organic solar cells (OSCs). While the effect of molecular properties including structures and energetics on charge transfer has been extensively investigated, the effect of macroscopic-phase properties is yet to be revealed. Here we have performed a...
Ping, H., Poudel, L., Xie, H., Fang, W., Zou, Z., Zhai, P., Wagermaier, W., Fratzl, P., Wang, W., Wang, H., O'Reilly, P., Ching, WY., Fu, Z.
Mesoporous silica particles of controlled size and shape are potentially beneficial for many applications, but their usage may be limited by the complex procedure of fabrication. Biotemplating provides a facile approach to synthesize materials with desired shapes. Herein, a bioinspired design principle is adopted through...